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ABSTRACT 

It is proved that the relative boundary of a k-dimensional intersection of a 
hyperplane and a compact convex body is contained in the closure of the union 
of all intersections of dimension lower than p that the same convex body 
makes with different hyperplanes. 

We prove in this note a theorem that  generalizes a theorem of  Straszewicz [-3]. 
Let C be a compact  convex body in R n. 

DEFINITION 1. A point  p e C is called k-extreme if it is not  the centroid of  some 

non-degenerate (k + 1)-simplex in C. 

In the terminology of  Bourbaki I-2, §1, exerc. 2] one would say that a k-extreme 
point is o f  order at most  k. 

DEFINITION 2. A point p e C is called k-exposed if it is contained in a closed 
half-space K such that  K n C is at most  k-dimensional. 

We collect some immediate consequences of  the definitions. 

COROLLARY. A k-exposed point is k-extreme. A k-exposed (extreme) point is 
h-exposed (extreme)for all h > k. I f  ~p is a supporting hyperplane of C and 
p ~ q~ n C is k-extreme with respect to ~ n C, then p is k-extreme with respect 
to C. 

We will call 0-exposed (extreme) points exposed (extreme) to conform with 
earlier usage. The following theorem coincides for k = 0 with the theorem of 
Straszewicz. 

THEOREM. For k > O, the closure of the set of k-exposed points contains 
the set of k-extreme points. 

For  k > n -  1, the theorem is true trivially. For  k = n -  1 the set of  k-exposed 

points and the set of  k-extreme points both coincide with bd C and for k __> n 

with C. 
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This theorem is applied in [1] to the problem of  determining which subsets 

of  a general finite-dimensional Banach space have unique farthest points. 
We proceed to prove the theorem by induction on k. The proof  for k = 0 may 

be found in Straszewicz [3] and in Bourbaki [2, §4, exerc. 15c], and we will use 
this "ordinary Straszewicz theorem"  both as a starting point for the induction 

and in the proof  itself. 
Suppose that the theorem has been proved for k < h. Let p be a point in the 

complement of  the closure of  the set of h-exposed points. In order to obtain a 
contradiction we also add the hypothesis that p is h-extreme. 

Let A be an open neighborhood of p such that no q EA is h-exposed. By 
the induction hypothesis, p is the centroid of  some non-degenerate h-simplex S. 
Choose a linear manifold M that passes through p and that is supplementary to 
the one generated by S. Since by hypothesis the point p is h-extreme, it must be 
extreme relative to M n C and hence, by the ordinary Straszewicz theorem, 

some point q E A n M n C is exposed relative to M n C. 
We will now show that the face of q is at most  (h-1)-dimensional ,  thereby 

arriving at the contradiction, since by hypothesis q is not  ( h -  1)-extreme. 
Let N be a hyperplane of M that separates q from M n C. As an affine manifold 

of R n, N has codimension h + 1 and N n C = {q). By the Hahn-Banach theorem, 
there is a hyperplane tk containing N that supports C at q. In this hyperplane N 
has codimension h and separates q from the rest of ~b n C. But q is not  h-exposed, 

hence q5 n C has at least dimension h + 1. 
Let F be the affine space generated by ~b n C. Then N n F has codimension 

at most h in F, and (N n F) n C = {q} so that there exists a hyperplane ~k of  F 
supporting q ~ A C = F C ~ C  at q and containing N ~ F .  In ~, N t ~ F  has 
codimension at most h - 1 .  But ~k also contains the face o fq  (in C), which therefore 
can have at most dimension h - 1. The proof  is now complete. 
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